拜永孝
职 称:教授,博士生导师 办公地址:理工楼1407 邮 箱:baiyx@lzu.edu.cn
政治面貌:中共党员 联系电话:
招生专业:材料物理与化学、材料学、材料工程、材料加工
研究方向:石墨烯复合材料、纳米能源材料与器件
个人简介
拜永孝,男,汉族,教授,博士研究生导师,软物质与先进功能材料研究所所长、甘肃省炭素新材料行业技术中心主任。2006年毕业于兰州大学化学化工学院获得高分子化学与物理专业理学博士学位;2009-2011于美国密歇根大学从事博士后研究工作。主要从事石墨烯制备方法、石墨烯-高分子先进功能复合材料、钠/锂离子电池能源材料与器件领域的基础研究、技术开发和工程应用方面的研究工作。在Advanced Fiber Materials、Chemical Engineering Journal、Journal of Materials Chemistry A、Composites Science and Technology、Composite Part A、Electrochimica Acta、Chemical Communications、Nanoscale、Journal of Energy Storage等期刊上发表了80余篇研究论文,获得授权了50余件中国发明专利。担任中国材料研究学会纤维材料改性与复合技术分会常务理事、中国石墨烯产业技术创新战略联盟理事、上海市石墨烯产业技术功能型平台产业发展顾问、中国福建石墨烯创新创业大赛导师、甘肃省材料学会理事、甘肃省机械工程学会材料热处理与表面工程分会理事、美国化学会会员和中国化学会会员等职务。
主要科研成果
目前主持国家自然科学基金面上项目、中央引导地方科技发展资金项目、企业委托开发项目等各类项目6项。
主要论文专著
发表SCI/EI论文80余篇,近年发表的代表性论文如下:
[1] An improved and scalable method for the preparation of Sn-doped hexagonal tungsten bronze-type iron fluoride materials as cathodes for sodium-ion batteries. Journal of Materials Chemistry A. 2024, 12, 212-221.
[2] Interfacial Modulation of Polydopamine-Reduced Graphene Oxide for Achieving Highly-Conductive and Strong Cotton Yarn Toward Smart Wearable Devices. Advanced Fiber Materials. 2024. 6(6), 1798-1812.
[3] Developing a highly-conductive and strength cotton yarn through dual shell architecture of graphene for smart wearable devices. Chemical Engineering Journal. 2023. 7. 143912-143925.
[4] A strategy for constructing 3D ordered boron nitride aerogels-based thermally conductive phase change composites for battery thermal management. Journal of Materials Science & Technology. 2023. 160. 248-257.
[5] Enhanced mechanical strength and antibacterial properties of Chitosan/Graphene oxide composite fibres. Cellulose. 2022. 29. 3889-3900.
[6] Engineering Interlaced Architecture of Pristine Graphene Anchored with 2‑Amino-8-Naphthol 6‑Sulfonic Acids for Printed Hybrid Micro-Supercapacitors with High Electrochemical Capability. ACS Applied Materials & Interfaces. 2022, 14, 41348-41360.
[7]Facile Synthesis of Graphene with Fast Ion/Electron Channels for High Performance Symmetric Lithium-Ion Capacitors. ACS Applied Materials & Interfaces. 2021, 8, 1-12.
[8]Boron nitride self-assembly cladding structure promoting thermal property and dimensional stability of polymer composites. Composites Science and Technology.2021, 201, 108536-108545.
[9]Ordinary flter paper-derived hierarchical pore structure carbon materials for supercapacitor. Journal of Energy Storage. 2021, 35, 102331-102337.
[10]Synthesis of dense but microporous graphene by Na+ ions intercalation toward high volumetric performance supercapacitors. Applied Surface Science. 2020, 526, 146728-146736.
[11]Sand-Milling Fabrication of Screen-Printable Graphene Composite Inks for High-Performance Planar Micro-Supercapacitors. ACS Applied Materials & Interfaces. 2020, 12, 56319-56329.
[12]Functional & enhanced graphene/polyamide 6 composite fiber constructed by a facile and universal method. Composites Part A. 2019, 123, 149-157.